3,830 research outputs found

    A new, globally convergent Riemannian conjugate gradient method

    Get PDF
    This article deals with the conjugate gradient method on a Riemannian manifold with interest in global convergence analysis. The existing conjugate gradient algorithms on a manifold endowed with a vector transport need the assumption that the vector transport does not increase the norm of tangent vectors, in order to confirm that generated sequences have a global convergence property. In this article, the notion of a scaled vector transport is introduced to improve the algorithm so that the generated sequences may have a global convergence property under a relaxed assumption. In the proposed algorithm, the transported vector is rescaled in case its norm has increased during the transport. The global convergence is theoretically proved and numerically observed with examples. In fact, numerical experiments show that there exist minimization problems for which the existing algorithm generates divergent sequences, but the proposed algorithm generates convergent sequences.Comment: 22 pages, 8 figure

    Riemannian Conjugate Gradient Methods: General Framework and Specific Algorithms with Convergence Analyses

    Get PDF
    Conjugate gradient methods are important first-order optimization algorithms both in Euclidean spaces and on Riemannian manifolds. However, while various types of conjugate gradient methods have been studied in Euclidean spaces, there are relatively fewer studies for those on Riemannian manifolds (i.e., Riemannian conjugate gradient methods). This paper proposes a novel general framework that unifies existing Riemannian conjugate gradient methods such as the ones that utilize a vector transport or inverse retraction. The proposed framework also develops other methods that have not been covered in previous studies. Furthermore, conditions for the convergence of a class of algorithms in the proposed framework are clarified. Moreover, the global convergence properties of several specific types of algorithms are extensively analyzed. The analysis provides the theoretical results for some algorithms in a more general setting than the existing studies and new developments for other algorithms. Numerical experiments are performed to confirm the validity of the theoretical results. The experimental results are used to compare the performances of several specific algorithms in the proposed framework
    corecore